Numerical optimization using synergetic swarms of foraging bacterial populations
نویسندگان
چکیده
The bacterial foraging optimization (BFO) algorithm is a popular stochastic, population-based optimization technique that can be applied to a wide range of problems. Two are the major issues the BFO algorithm is confronted with: first, the foraging mechanism of BFO might in some cases induce the attraction of bacteria gathered near the global optimum by bacteria gathered to local optima, thus slowing down the whole population convergence. Second, BFO is susceptible to the curse-of-dimensionality, which makes it significantly harder to find the global optimum of a high-dimensional problem, compared to a low-dimensional problem with similar topology. In this paper, we introduce a novel BFO-based optimization algorithm aiming to address these issues, the synergetic bacterial swarming optimization (SBSO) algorithm. Our novel approach consists of: (i) the introduction of the swarming dynamics of the particle swarm optimization algorithm in the context of BFO, in order to ameliorate the convergence issues of the BFO bacteria foraging mechanism; and (ii) the utilization of multiple populations to optimize different components of the solution vector cooperatively, so as to mitigate the curse-of-dimensionality issues of the algorithm. We demonstrate the efficacy of our approach on several benchmark optimization
منابع مشابه
Control of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کاملRelevance of Artificial Bee Colony Algorithm over Other Swarm Intelligence Algorithms
A new population-based search algorithm called the Bees Algorithm (BA) is presented in this paper. The algorithm mimics the food foraging behavior of swarms of honey bees. This algorithm performs a kind of neighborhood search combined with random search and can be used for both combinatorial optimization and functional optimization and with good numerical optimization results. ABC is a meta-heu...
متن کاملSub-transmission sub-station expansion planning based on bacterial foraging optimization algorithm
In recent years, significant research efforts have been devoted to the optimal planning of power systems. Substation Expansion Planning (SEP) as a sub-system of power system planning consists of finding the most economical solution with the optimal location and size of future substations and/or feeders to meet the future load demand. The large number of design variables and combination of discr...
متن کاملImproved Bacterial Foraging Optimization with Social Cooperation and Adaptive Step Size
This paper proposed an Improved Bacterial Foraging Optimization (IBFO) algorithm to enhance the optimization ability of original Bacterial Foraging Optimization. In the new algorithm, Social cooperation is introduced to guide the bacteria tumbling towards better directions. Meanwhile, adaptive step size is employed in chemotaxis process. The new algorithm is tested on a set of benchmark functio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 38 شماره
صفحات -
تاریخ انتشار 2011